

Master in Computer Vision Barcelona

Module 4: 3D Vision

Project: 3D recovery of urban scenes

Group 7: Josep Brugués i Pujolràs / Sergi García Sarroca Òscar Lorente Corominas / Ian Riera Smolinska

JAB \bullet UOC III UPC $\mathbf{u}pf$. The Master in Computer Vision Barcelona

Contents:

- 1. Image Rectification.
- 2. Homography Estimation & Applications.
- 3. The Geometry of Two Views.
- 4. Reconstruction From Two Views.
- 5. 3D Reconstruction From N Non-Calibrated Cameras.

UPAB \bullet UOC **HUPC** $\mathbf{u}pf$. Aster in Computer Vision Barcelona

Lab 1: Core Function

Inputs: *Image, Homography, Corners.* **Outputs**: *I_rectified, rectified_image_axis, rectified_image_corners.*

- 1. Compute the corners of the input image.
- 2. Create mesh of coordinates.
- 3. Inverse of the H multiplied by the mesh coordinates ---> Positions on the image.
- 4. Map pixels with interpolation.

I.e:

B

UOC

WPC

upt.

Master in Computer Vision Barcelona

Lab 1: Similarity Transformation

$$H_s = \begin{bmatrix} sR & \overrightarrow{t} \\ \overrightarrow{0}^T & 1 \end{bmatrix} = \begin{bmatrix} scos(\theta) & -ssin(\theta) & tx \\ ssin(\theta) & scos(\theta) & ty \\ 0 & 0 & 1 \end{bmatrix}$$

Lab 1: Affinities

$$H_a = \begin{bmatrix} A & \overrightarrow{t} \\ \overrightarrow{0}^T & 1 \end{bmatrix}$$

s = [3, 2] $\theta = \pi$ $\phi = -1.2 * \pi$ (tx, ty) = (30, 30)

upf.

Affine Transformation 2

WPC

UOC

В

$$A = R(\theta)R(-\phi)DR(\phi)$$
$$A = UDV^{T} = (UV^{T})(VDV^{T})$$

Affine Transformation 1 - SVD

ò

Lab 1: Projective Transformations

$$H_p = \begin{bmatrix} A & \overrightarrow{t} \\ \overrightarrow{v}^T & v \end{bmatrix}$$

В

$$A = \begin{bmatrix} 0.5 & -0.25 \\ -0.25 & 0.5 \end{bmatrix}$$
$$\vec{v} = \begin{bmatrix} 0.0015, 0.001 \end{bmatrix}$$
$$(tx, ty) = (60, 80)$$

Lab 1: Affine Rectification

$$H_{a \leftarrow p} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l1 & l2 & l3 \end{bmatrix}$$

Original

Affine Transformation

upf.

UPC

• U0C

UAB

$$v_1 = l1 \times l2 \qquad v_2 = l3 \times l4$$
$$L_{\infty} = v1 \times v2$$

Real World Parallel Lines

Recovered Parallelism

Master in Computer Vision Barcelona

Lab 1: Affine Rectification Results

Image	Set of Parallel Lines		
	L1/L2	L3/L4	
Original	0.10	1.34	
Rectified	0.0	0.0	

Lab 1: Metric rectification

$$H_{s\leftarrow a} = \begin{bmatrix} K^{-1} \overrightarrow{0} \\ \overrightarrow{0^T} & 1 \end{bmatrix}$$

 $(l_1m_1, l_1m_2 + l_2m_1, l_2m_2)\overrightarrow{s} = 0$

Metric rectified

UAB

Perpendicularity Recovered

Lab 1: Metric Rectification Results

Imagaa	Set of Orthogonal Lines			
inages	L1/L3	L2/L4	L5/L6	
Affine	72.64	72.64	72.01	
Metric	90	90	90	

Lab 1: Stratified Rectification on Left Facade

Lab 1 - OPT: Single step metric rectification

Set of Lines

WPC

UAB

Metric Recovered (Flipped)

Metric Recovered (Corrected)

Lab 2: Homography estimation

Problem Statement

Given a set of 2D-point correspondences between 2 images, calculate the homography that relates two images:

- From the same scene but taken from different viewpoints
- We need a minimum of 4 2D point correspondences -> SIFT and ORB

Algorithms

- Normalized Direct Linear Transformation (N-DLT) algorithm with RANSAC.
- Gold Standard Algorithm

Applications

•] U O C

UAB

- Calibration with a planar pattern
- Logo detection and replacement

upt.

Image mosaicking

Lab 2: Image mosaicking

Llanes panorama

Castle mosaic

Aerial Site 13 mosaic

Aerial Site 22 mosaic

Lab 2: Image mosaicking

Castle mosaic

Lab 2: Gold Standard algorithm

Problem Statement

- The Gold Standard Algorithm is used to get a robust estimation of the homography H.
- It uses the Levenberg-Marquadt iterative algorithm to minimize the reprojection error.

н	Reprojection Error		
	Original	Refined	
H ₁₂	8963534	16	
H ₂₃	43022747	27	

Refined moisaic

В

Non-refined moisaic

Lab 2: Calibration with a planar pattern

Problem Statement

Homographies can be used for camera calibration (Zhang's algorithm) by modeling a camera as the relationship between a set of 3D points X and their image projection x (x = PX).

Approach

• The camera matrix P can be decomposed as

P = K[R|t]

• To find K we use the image w of the absolute conic as:

 $\omega = K^{-T}K^{-1}$

with 6 unknowns.

IIIUPC

•] U O C

в

- For each image we have a set of two equations, so at least we need 3 images.
- K is found by Cholesky. Once K is found, the external parameters can be estimated

Lab 2: Calibration with a planar pattern

Once the images are calibrated and the relative pose between the camera and the planar patterns is recover, we can place virtual objects on the image

В

Lab 2: Logo detection and replacement

Implementation

- Find correspondences between the logo and the main image.
- Compute relating homography.
- Transform the logo with the homography.

Logo on UPF building

upf.

Logo on UPF stand

•**□**U0C **=**UPC

۲

Lab 3: Fundamental matrix estimation

Problem Statement

Given a set of 2D-point correspondences between 2 images, calculate the fundamental matrix that relates two images:

- From the same scene but taken from different viewpoints
- We need a minimum of 8 point correspondences -> ORB or SIFT

Algorithms

- Normalized 8-point algorithm (algebraic method)
- Robust normalized 8-point algorithm (with RANSAC)

Applications

•] U O C

UAB

Photo sequencing

Lab 3: Epipolar lines - Results

"Inliers" - ORB

Image 1 - SIFT

UPC

upf.

• 100C

UAB

Inliers - SIFT

Goal

Unordered frames

Tali Dekel, Yael Moses, and Shai Avidan, "Photo sequencing," International Journal of Computer Vision, vol. 110, no. 3, pp. 275–289, 2014.

Keypoint matches

Match on the dynamic object

Inliers

• U0C

UAB

WPC

upf.

Master in Computer Vision Barcelona

25

Result

Unordered frames

Van 3D trajectory

Initial frames

- Much closer point of view
- Blurry dynamic object

Matches on the dynamic object

• Not so accurate

Result

•**J**00C

UAB

Nala 3D trajectory

Lab 3: Photo sequencing - BCN street

Initial frames

• Moving in opposite directions

UAB \mathbf{U} UOC **HUPC** $\mathbf{u} p f$. Aster in Computer Vision Barcelona

Lab 3: Photo sequencing - BCN street

Result

Pedestrian 3D trajectory

Van 3D trajectory

Goal

View 2

UPC

upf.

• 100C

UAB

First camera matrix: P

$$P = K[I \mid 0]$$

upf.

WPC

•] UOC

В

Master in Computer Vision Barcelona

upf.

UOC

В

WPC

Master in Computer Vision Barcelona

Final 3D reconstruction

Reprojection error

• 100C

UAB

WPC

upf.

Master in Computer Vision Barcelona

Goal

UPC

upf.

• 100C

UAB

Results: Small window size

Window size: 3x3

Results: Larger window sizes

Results: Larger window sizes

• UOC

UAB

WPC

upf.

Comparing results

•] UOC

В

UA

Facade images

WPC

В

upf.

Objects further away
 Worse results
 Repetitive patterns

Facade images

WDC

В

upf.

Worse results {
 Objects further away
 Repetitive patterns

Facade images

WDC

В

upf.

- Worse results {
 Objects further away
 Repetitive patterns

upf.

WDC

•] UOC

В

Loopy Belief Propagation (LBP)

LBP: Results

LBP: Cost functions

UAB

• U0C

WPC

upf.

- More iterations
- Higher cost

Depth from disparity

Depth

Scene1

Disparity

Lab 4: New view synthesis

Method

S. M. Seitz and C. R. Dyer, "View morphing," Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH '96. New York, NY, USA: Association for Computing Machinery, 1996, p. 21–30.

UPIB 🖸 UOC III UPC upf. 🐼 Master in Computer Vision Barcelona

Lab 4: New view synthesis

Resulting GIF

GIF generated with 9 new views

Lab 5 - Intro SFM

Lab 5 - Correspondence Search

UAB

find_features_orb

match_features_hamming

compute_fundamental_robust

refine_matches

display_epilines

Lab 5 - Projective reconstruction

Projective camera matrices

 $\boldsymbol{P}_0 = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{0} \end{bmatrix} \qquad \boldsymbol{P}' = \begin{bmatrix} [\mathbf{e}']_{\times} \boldsymbol{F} + \mathbf{e}' \mathbf{v}^{\top} & \boldsymbol{\lambda} \mathbf{e}' \end{bmatrix}$

Lab 5 - Geometric Verification: Rectification

Lab 5 - Reprojection Error

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}_{i}', \hat{\mathbf{x}}_{i}')^{2}$$

where $\hat{x} = PX$ and $\hat{x}' = P'X$

Reprojection error	Intrinsics	
	Yes	Νο
Reprojective		3.50695067e-07
Affine		3.50695140e-07
Euclidean	8.614e08	3.50695165e-07

Lab 5 - Resection method

Lab 5 - Incremental Reconstruction

Conclusions

- To obtain good results we rely completely on finding good correspondences
- RANSAC is more robust, but it is random and results are not consistent
- The relative position between images of a set is important
- The methods that we applied need to be supervised, it is not automatic
- From just a pair of close images, we can mosaic them, perform a 3d reconstruction, calculate the depth maps and even generate new synthetic views

Group 7: Josep Brugués i Pujolràs / Sergi García Sarroca Òscar Lorente Corominas / Ian Riera Smolinska

JAB \bullet UOC IIVPC $\mathbf{u}pf$. The Master in Computer Vision Barcelona