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Module 4: 3D Vision



Contents:

1. Image Rectification.

2. Homography Estimation & Applications. 

3. The Geometry of Two Views. 

4. Reconstruction From Two Views.

5. 3D Reconstruction From N Non-Calibrated Cameras.



I.e:

Lab 1: Core Function

Inputs: Image, Homography, Corners. 
Outputs: I_rectified, rectified _image_axis, rectified_image_corners.

1. Compute the corners of the input image. 

2. Create mesh of coordinates. 

3. Inverse of the H multiplied by the mesh coordinates ---> Positions on the image. 

4. Map pixels with interpolation. 



Lab 1: Similarity Transformation
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Original Scaled

Scaled and Rotated Scaled, Translated and 
Rotated

s = 0.5
θ = 0.1∗π

s = 0.5
θ = 0.1∗π
tx = 400
ty = 300

s = 0.5



Lab 1: Affinities
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Original

Affine Transformation 2

Affine Transformation 1

Affine Transformation 1 - SVD

Difference of 
3.05x10-32



Lab 1: Projective Transformations
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Lab 1: Affine Rectification
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Original Real World Parallel Lines

Affine Transformation Recovered Parallelism



Lab 1: Affine Rectification Results
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Image
Set of Parallel Lines

L1/L2 L3/L4

Original 0.10 1.34

Rectified 0.0 0.0



Lab 1: Metric rectification
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Metric rectified Perpendicularity Recovered



Lab 1: Metric Rectification Results
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Images
Set of Orthogonal Lines

L1/L3 L2/L4 L5/L6

Affine 72.64 72.64 72.01

Metric 90 90 90



Lab 1: Stratified Rectification on Left Facade

11

Original Real Parallel Lines Affine Transformation Parallelism Recovered

Metric Rectification Perpendicularity Recovered Proper Representation

Image
Set of Parallel Lines

L1/L2 L3/L4

Original 4.4 0.13

Rectified 0.0 0.0

Image
Set of Orthogonal Lines

L1/L3 L2/L4 L5/L6

Affine 113.8 113.8 124.14

Metric 90 90 90



Lab 1 - OPT: Single step metric rectification 
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Set of Lines Metric Recovered (Flipped) Metric Recovered (Corrected)

Direct method
| diag(H) |



Lab 2: Homography estimation 

Given a set of 2D-point correspondences between 2 images, calculate the homography 
that relates two images:

• From the same scene but taken from different viewpoints
• We need a minimum of 4 2D point correspondences -> SIFT and ORB
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Problem Statement

Applications

• Calibration with a planar pattern
• Logo detection and replacement
• Image mosaicking

Algorithms

• Normalized Direct Linear Transformation (N-DLT) algorithm with RANSAC.
• Gold Standard Algorithm



Lab 2: Image mosaicking
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Llanes panorama

Aerial Site 13 mosaic Aerial Site 22 mosaic

Castle mosaic
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Lab 2: Image mosaicking

Castle mosaic



Lab 2: Gold Standard algorithm

• The Gold Standard Algorithm is used to 
get a robust estimation of the 
homography H.

• It uses the Levenberg-Marquadt iterative 
algorithm to minimize the reprojection 
error.  
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Non-refined moisaicRefined moisaic

H
Reprojection Error

Original Refined

H12 8963534 16

H23 43022747 27

Problem Statement



Lab 2: Calibration with a planar pattern

Homographies can be used for camera calibration (Zhang’s algorithm) by modeling a 
camera as the relationship between a set of 3D points X and their image projection x (x = 
PX) .
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Problem Statement

Approach

● The camera matrix P can be decomposed as

● To find K we use the image w of the absolute conic as:

with 6 unknowns. 

● For each image we have a set of two equations, so at least we need 3 images.

● K is found by Cholesky. Once K is found, the external parameters can be estimated



Lab 2: Calibration with a planar pattern
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Once the images are calibrated and the relative pose between the camera and the planar patterns is 
recover, we can place virtual objects on the image

Cube on image 4 Cube on image 5

Camera positionsPlanes positions



Lab 2: Logo detection and replacement
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Logo on UPF 
building Logo on UPF stand

Implementation

• Find correspondences between the logo and the main image.
• Compute relating homography.
• Transform the logo with the homography.



Lab 3: Fundamental matrix estimation

20

Given a set of 2D-point correspondences between 2 images, calculate the fundamental 
matrix that relates two images:

• From the same scene but taken from different viewpoints
• We need a minimum of 8 point correspondences -> ORB or SIFT

Problem Statement

Applications

• Photo sequencing

Algorithms

• Normalized 8-point algorithm (algebraic method)
• Robust normalized 8-point algorithm (with RANSAC)



Lab 3: Epipolar lines - Results
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Image 1 - ORB

Image 1 - SIFT

“Inliers” - ORB

Inliers - SIFT



Lab 3: Photo sequencing - Aerial
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Tali Dekel, Yael Moses, and Shai Avidan, “Photo sequencing,” International 
Journal of Computer Vision, vol. 110, no. 3, pp. 275–289, 2014.

Goal

Reference Image

Unordered frames



Lab 3: Photo sequencing - Aerial
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Keypoint matches



Lab 3: Photo sequencing - Aerial
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Match on the dynamic object

We need 
this!



Lab 3: Photo sequencing - Aerial
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Inliers

Only the 
static 
parts!



Lab 3: Photo sequencing - Aerial
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Result Unordered frames

Van 3D trajectory 



Lab 3: Photo sequencing - Nala
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Initial frames

● Much closer 
point of view

● Blurry dynamic 
object



Lab 3: Photo sequencing - Nala
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Matches on the dynamic object 

● Not so accurate



Lab 3: Photo sequencing - Nala

29

Result

Nala 3D trajectory 



Lab 3: Photo sequencing - BCN street
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Initial frames

● Moving in opposite directions



Lab 3: Photo sequencing - BCN street
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Result

Pedestrian 3D trajectory Van 3D trajectory 



Lab 4: Reconstruction from two images
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Goal

View 1

View 2

3D reconstruction

Triangulation

-2D correspondences

-Camera projection 
matrices



Lab 4: Reconstruction from two images
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First camera matrix: P



Lab 4: Reconstruction from two images
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Second camera matrix: 4 candidates



Lab 4: Reconstruction from two images
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Second camera matrix: P’

P P’

X



Lab 4: Reconstruction from two images
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Final 3D reconstruction



Lab 4: Reconstruction from two images
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Reprojection error

Histogram of errors



Lab 4: Disparity Map Computation
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Goal

View 1

View 2

Disparity Map

Disparity Estimation

-  Sliding window

- Cost function
     · SSD
     · NCC

- Minimum cost



Lab 4: Disparity Map Computation
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Results: Small window size

Window size: 3x3



Lab 4: Disparity Map Computation
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Results: Larger window sizes

Window size: 3x3 Window size: 9x9 Window size: 21x21 Window size: 31x31

● Smoother disparity maps



Lab 4: Disparity Map Computation
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Results: Larger window sizes

Window size: 3x3 Window size: 9x9 Window size: 21x21 Window size: 31x31

● Smoother disparity maps
● Less details



Lab 4: Disparity Map Computation
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Bilateral weights Gaussian

Bilateral

● Color 
information

● Geometric 
information



Lab 4: Disparity Map Computation
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Comparing results

Window size: 3x3 Window size: 9x9 Window size: 21x21 Window size: 31x31

Previous results

Bilateral weights



Lab 4: Disparity Map Computation
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Facade images

Window size: 3x3 Window size: 9x9 Window size: 21x21 Window size: 31x31

Worse results

● Objects further away

● Repetitive patterns



Lab 4: Disparity Map Computation
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Facade images

Window size: 3x3 Window size: 9x9 Window size: 21x21 Window size: 31x31

Worse results

● Objects further away

● Repetitive patterns



Lab 4: Disparity Map Computation
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Facade images

Window size: 3x3 Window size: 9x9 Window size: 21x21 Window size: 31x31

Worse results

● Objects further away

● Repetitive patterns



Lab 4: Disparity Map Computation
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Loopy Belief Propagation (LBP)

View 1

View 2

xij xik

xskxsj

yij yik

yskysj

Graph 1

Graph 2

Disparity Estimation

- LBP

- Energy minimization



Lab 4: Disparity Map Computation
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LBP: Results

Scene1 Facade



Lab 4: Disparity Map Computation
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LBP: Cost functions

Scene1 Facade

● More iterations

● Higher cost



Lab 4: Disparity Map Computation
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Depth from disparity

Disparity Depth

Sc
en

e1
Fa

ca
de



Lab 4: New view synthesis
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S. M. Seitz and C. R. Dyer, “View morphing,” Conference on Computer Graphics and Interactive Techniques, 
ser. SIGGRAPH ’96. New York, NY, USA: Association for Computing Machinery, 1996, p. 21–30.

Method

Image Disparity map

Le
ft

R
ig

ht

Here, s = 0.5



Lab 4: New view synthesis
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Resulting GIF

GIF generated with 9 new views



Lab 5 - Intro SFM
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Lab 1

Lab 2 -

Lab 4



Lab 5 - Correspondence Search
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find_features_orb

match_features_hamming

compute_fundamental_robust

display_epilines

refine_matches



Lab 5 - Projective reconstruction
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Projective camera matrices



Lab 5 - Geometric Verification: Rectification
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Affine Metric



Lab 5 - Reprojection Error
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Reprojection 
error

Intrinsics

Yes No

Reprojective 3.50695067e-07

Affine 3.50695140e-07

Euclidean 8.614e08 3.50695165e-07



Lab 5 - Resection method
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Lab 5 - Incremental Reconstruction
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Conclusions
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• To obtain good results we rely completely on finding good correspondences

• RANSAC is more robust, but it is random and results are not consistent

• The relative position between images of a set is important

• The methods that we applied need to be supervised, it is not automatic

• From just a pair of close images, we can mosaic them, perform a 3d reconstruction, 
calculate the depth maps and even generate new synthetic views
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