

Master in Computer Vision Barcelona

M2: Optimisation and Inference for Computer Vision

Final Project Presentation

Team 1:

WUPC

upf.

UAB

- Òscar Lorente Corominas
- Antoni Rodriguez Villegas
- Aditya Sangram Singh Rana

Contents

- 1. Optimisation in Computer Vision
- 2. Research Paper
- 3. Poisson Editing
- 4. Chan-Vese Segmentation
- 5. Segmentation using MRFs
- 6. Advantages and Limitations

WPC

UAB

7. Future Work and Conclusions

upf.

Optimisation in Computer Vision

Optimization in Computer Vision is about trying to solve

complex ill-posed problems where we cannot find

analytical solutions and hence we try to formulate it based

on some criterions and look for a numerical solution that is

acceptable upto some tolerance.

IIIUPC

up

Research Paper

Determining Optical Flow Horn, Berthold & Schunck, Brian. (1981). Artificial Intelligence. 17. 185-203. 10.1016/0004-3702(81)90024-2.

Link : http://image.diku.dk/imagecanon/material/HornSchunckOptical_Flow.pdf

•] U O C

UAB

IIIUPC

upf.

Optical Flow: Problem

 $\mathbf{u}\mathbf{p}$.

How to estimate pixel motion from Image $I(x, y, t) \rightarrow I(x, y, t+1)$?

Solve The Pixel Correspondence Problem: Given a pixel in I(x, y, t), look for **nearby** pixels of the **same intensity** in I(x, y, t+1).

Optical Flow is the **apparent** motion of objects or surfaces.

Criterion	Implication	Vis	ual	INSIGHT: If the time step is really small, we
Small motion: points do not move very far in consecutive frames, meaning motion is smooth.	Displacement: $(\delta x, \delta y) = (u \delta t, v \delta t)$ Optical flow (velocities): (u, v)	(x,y) $I(x,y,t)$ $I(x,y,t)$	$(x + u\delta t, y + v\delta t)$ $t + \delta t)$	can linearize the intensity function using Multivariable Taylor Series Expansion (First order approximation with two variables)
Brightness: brightness of point will remain the same	$I(x(t),y(t),t) = \underset{\text{constant}}{C}$	(x(1), y(1)) I(x, y, 1) I(x, y, 2)	(x(k), y(k)) $(x(k), y(k))$ $I(x, y, k)$	
SOLVE: For a really small space time-step, $I(x+u\delta t, y+v\delta t, t+\delta t) = I(x, y, t)$ The brightness between two consecutive frames is same $dI = \partial I dx + \partial I dy + \partial I$				
	Master in Computer Visio	n Barcelona	$\overline{dt} = \overline{\partial x} \overline{dt} + \overline{\partial y} \overline{dt}$	$+\frac{1}{\partial t} = 0$ 5

Optical Flow: Solution

$\partial I dx$	$\partial I dy$	$\frac{\partial I}{\partial I} = 0$
$\overline{\partial x} \ \overline{dt}$	$\overline{\partial y} \overline{dt}$	$+ \frac{1}{\partial t} = 0$

Brightness Constancy Equation

 $I_x u + I_y v + I_t = 0$

shorthand notation

QUESTION: What do the term of the brightness constancy equation represent?

IIIUPC

upt.

UAB

 $I_x \underbrace{u}^{\text{unknown}} + I_y \underbrace{v}^{\text{unknown}} + I_t = 0$

NOTE: We need at least **2** equations to solve for **2** unknowns.

Where do we get more equations (constraints)?

Horn-Schunck Assumption: most objects in the world are rigid, deform elastically and move together coherently.

Implication: Enforce optical flow fields to be smooth

Optical Flow: Results

UAB

• UOC

WDC

upf.

Poisson Editing: Problem

Add a region of a source image B to a target image A while keeping it photorealistic.

We can't just crop the source region and paste it into the destination image **D**.

Create a new image H that keeps the colors of image A and the details (i.e. gradients) of image B.

Poisson Editing: Solution

Poisson equation with Dirichlet boundary conditions

$$\Delta f = \operatorname{div} \mathbf{v} \operatorname{over} \Omega$$
, with $f|_{\partial \Omega} = f^*|_{\partial \Omega}$

<u>Importing gradients</u> $\Delta f = \Delta g$ over Ω , with $f|_{\partial \Omega} = f^*|_{\partial \Omega}$

Criterion	Implication
The transition between A and B must be smooth , that is conserving the colours of image A	H(x,y) = A(x,y) at each (x,y) of the boundary of B
The details of B must be kept, that is the gradients must be conserved	∇H(x,y) = ∇B(x,y) at each (x,y) inside B
	$4 * H_{i, j} - (H_{i+1, j} + H_{i-1, j} + H_{i, j+1} + H_{i, j-1})$ =
B • U0C ≝UPC u <i>pf.</i> 🐼	Masterin Computer Vision B

upt.

Source image q -> B Target image f* -> A Resulting image f -> H

<u>Mixing gradients</u>

- When importing gradients, no trace of A remains inside the region we wanted to fill
- There are situations where it is desirable to combine properties of A with those of **B**, (e.g. to add objects with holes, or partially transparent ones, on top of a textured or cluttered background)
- With the mixing gradients algorithm, we retain the stronger of the variations in image A or in image B, using the following guidance field:

for all
$$\mathbf{x} \in \Omega$$
, $\mathbf{v}(\mathbf{x}) = \begin{cases} \nabla f^*(\mathbf{x}) & \text{if } |\nabla f^*(\mathbf{x})| > |\nabla g(\mathbf{x})|, \\ \nabla g(\mathbf{x}) & \text{otherwise.} \end{cases}$
 $\mathbf{v}(\mathbf{x}) = \begin{cases} \nabla A(x) & \text{if } |\nabla A(x)| > |\nabla B(x)| \\ \nabla B(x) & \text{otherwise} \end{cases}$

Poisson Editing: Results

Importing gradients

upf.

UAB

WPC

Chan-Vese Segmentation: Problem

Ø

UA

Segment image into meaningful regions

Criterion	Implication		
Segmentation result is an image	Mapping in the same domain $f ightarrow u$		
Segmentation image is similar to the original image	$\operatorname{Minimise}_{\Omega} \int_{\Omega} (f(x) - u(x))^2 dx$		
Segmented regions have smooth boundaries	Minimise $\underset{u,C}{\operatorname{argmin}} \ \mu \operatorname{Length}(C)$		
Segmented regions are homogeneous	Minimise $\int_{\Omega \setminus C} \nabla u(x) ^2 dx$		
Segmentation image has two regions	Constrain values $u(x) = \{c1, c2\}$ c_2		
Minimisation problem $Arg \min_{c_1, c_2, C} \mu Le_{c_1, c_2, C} + \lambda$	$\operatorname{ength}(C) + \nu \operatorname{Area}(inside(C))$ $\Lambda_1 \int_{\operatorname{inside}(C)} f(x) - c_1 ^2 dx + \lambda_2 \int_{\operatorname{cutraide}(C)} f(x) - c_2 $		
B) •_] UOC ##UPC upf. 🔂	J inside(C) J outside(C)		

u(x)

11

Chan-Vese Segmentation: Solution

Chan-Vese Segmentation: Results

upf.

UPC

UOC

•

UAB

Markov Random Fields: Problem

Homogeneous segmentation of non homogeneous regions in an image

- Applications in Medical image segmentation, where there are intensity inhomogeneities in the regions of interest. Some examples of applications are:
 - Segmentation of polyp ulceration in optical biopsies
 - Breast cancer MRIs with radio-frequency induced noise.

WUPC

Markov Random Fields: Solution

UAB

WPC

upf.

Probabilistic approach, take region consistency into account in classification of pixels

	Criterion		Implication		
	Each pixel should belong to the class that best corresponds its pixel value.		Maximise	$P(y_i C_i)$	
	Neighbouring pixels should belong to the same class as often as possible.		Maximise	$P(C_i C_j)$	
Minir	nise	$E(x,y) = \sum_{i} \underbrace{\varphi(x_i, y_i)}_{\text{unary term}} +$	$\sum_{ij} \underbrace{\psi(x)}_{pairwin}$	(x_i, x_j) α se term	Using ICM

Markov Random Fields: Results

UAB

WPC

upf.

Advantages and Limitations

• U0C #UPC

upf.

UAB

	Advantages	Limitations
Poisson Editing	Not computationally complex. Good results in general cases.	Gradients of target image are lost in some cases if not using mixing gradients.
Chan-Vese Segmentation	Good segmentation of regions not separated by edges.	 Fine tuning of parameters for every specific image. Only binary segmentation. Pixels intensities are assumed to be statistically homogenous in each region.
Markov Random Fields	Segmentation of non homogeneous regions.	Results sensitive to initial parameters.

Future Work and Conclusions

Conclusions

- Optimization techniques for computer vision are not overthrown by deep learning.
- Low computational complexity. Good for embedded systems (applications in ADAS).

Future Work

IIIUPC

upt.

UAB

• T U O C

- Work with other images and examples to find more limitations of each algorithm.
- Study of optimization techniques that are specific to medical implementations.

Master in Computer Vision Barcelona

Thank you!

Q&A

Team 1:

IIIUPC

upf.

UAB

- Òscar Lorente Corominas
- Antoni Rodriguez Villegas
- Aditya Sangram Singh Rana