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Multi-view 3D People Reconstruction
combining Parametric and Non-parametric models

Òscar Lorente Corominas

Abstract

3D reconstruction of human bodies from multiple images has been a long-standing problem in computer vision. It is typically
addressed using statistical models of the human body, which describe the geometry by a small number of parameters encoding 3D
pose and shape. Non-parametric representations are alternatives that gain expressiveness for cloth capture, but have difficulties in
recovering reasonable 3D human shapes when camera views are too sparse. In this dissertation, we aim to leverage the advantages
of parametric and non-parametric models by extending the parametric Skinned Multi-Person Linear Model (SMPL) with Implicit
Differentiable Renderer (IDR), an architecture that implicitly represents the geometry as a zero level-set of a neural network.
The neural surface of IDR is typically initialized as a sphere, which allows rendering objects of all types. However, our work
focuses on the reconstruction of human bodies, so we explore the contribution of parametric 3D human models such as SMPL
as priors. The evaluation has been performed on a subset of the Renderpeople dataset, using as metrics for 3D reconstruction the
Chamfer-L1 and point-to-surface distances, as well as PSNR for the corresponding renderings. The obtained results confirm that
in scenarios where the camera views are too sparse, using an SMPL model as a prior improves 3D reconstruction and accelerates
convergence. Finally, we propose a strategy based on an attention mechanism for IDR to improve the results on the head of the
person, where the original IDR pipeline struggles to achieve a detailed reconstruction.

Index Terms

3D Surface Reconstruction, Human Model, Implicit Neural Representation, Differential Renderer, Attention.

I. INTRODUCTION

In recent years, interest and research in 3D vision and artificial intelligence have grown exponentially, and many of the
applications in this field have been gradually integrated into our daily lives. This is the case of augmented/virtual reality,
animation, or virtual dressing, to name a few. In many of them, we find a common factor: the need for a 3D model of a
human body. Building these models from scratch is very time-consuming and labor-intensive for a designer, so researching
alternatives to do it automatically is a must.

Many of the existing systems for building 3D models rely on specialized and expensive hardware, so reconstructing 3D
shapes from data obtained with cheaper devices, such as RGB cameras, has become a common alternative. More specifically,
3D reconstruction of human bodies from RGB images is a fundamental problem in computer vision, and several works have
been developed to approach it from different points of view. One of the most common is the use of parametric models of
the entire human body [1], which describe the underlying geometry using a small number of parameters that encode 3D
pose and shape. While fitting these low-dimensional parametric models allows for efficient approaches robust to in-the-wild
images, the estimated shape corresponds to an undressed body and lacks the detail for capturing clothes. An alternative to gain
expressiveness and detail in cloth capture are non-parametric representations. However, in these cases, it is more difficult to
recover correct 3D human shapes when the camera views are too sparse, as shown in [2].

In this work, we take advantage of the robustness of parametric models and the flexibility of non-parametric representations
by extending the Skinned Multi-Person Linear Model (SMPL) [3], which is smooth and corresponds to an undressed body that
lacks the detail for capturing clothes, with Implicit Differentiable Renderer (IDR) [4], an architecture that implicitly represents
geometry as a zero-level set of a Signed Distance Function (SDF) modeled by a neural network. The implicit surface from
which IDR starts is usually initialized as a sphere, as this allows to adapt it to objects of all types. However, if we know a
priori that the shape to be reconstructed is a person, we can initialize this surface with a parametric 3D human model such as
SMPL. See Figure 1 for a big picture of the inputs and outputs of our system.

Hence, the main objective of our work is to investigate whether by using an initial shape more in line with the object to
be reconstructed, we can improve the quality of the results in situations with very sparse camera views. We expect the 3D
reconstruction to require fewer iterations to accurately represent the complex details of a human body, clothing, and hair, while
also improving the rendered images. The latter is important because, although this network stands out for its 3D reconstructions,
it is not able to achieve the same rendering quality as other state-of-the-art works such as NeRF and follow-ups [5, 6]. In this
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Advisor 1: Xavier Giró-i-Nieto, Image Processing Group, Universitat Politècnica de Catalunya
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(a) RGB images (b) SMPL model (c) Geometry (d) Appearance (e) Cameras

Fig. 1: Our system takes as inputs (a) RGB images and (b) SMPL models, which are undressed and lack the detail of clothes,
and outputs (c, d) a high-detail clothed reconstruction and (e) refined camera parameters.

work, we aim to reconstruct 3D human bodies with a higher level of detail than IDR by using SMPL models as priors, and
improve the quality of the renderings so that they are not so far from NeRF standards.

In parallel, we analyze the part of the human body where IDR has more difficulties in producing a detailed reconstruction:
the head, and we propose a strategy to solve it based on an attention mechanism. This is described in detail in Section VII,
but the main idea is to give emphasis to the parts where IDR is less confident about the results it provides. In this paper, we
present some simple experiments to corroborate that these difficult parts have less detail because they need more attention and
not because IDR does not have the capacity to reach higher quality.

This document presents the research conducted to corroborate the hypothesis formulated in the thesis. First, Section II
reviews the literature of multi-view 3D surface reconstruction of human bodies, as well as recent related work. Section III
describes the dataset used and discusses the proposed method in detail. Sections IV and V present the experiments performed
and the corresponding results, respectively. The latter are analyzed in Section VI, where we determine whether the hypothesis
has been corroborated and the implications of our work. Finally, in Section VII we discuss future work on this topic and
propose a strategy on which we are already working to improve IDR results based on an attention mechanism.

II. STATE OF THE ART

In this section, a review of the classical multi-view surface reconstruction techniques is presented, followed by the modern
methods and the advantages that IDR presents with respect to them. Then, we explain what it means to represent a surface
implicitly and how neural networks perform this task. Finally, some of the most recent works for reconstructing clothed humans
are described to understand the motivation and advantages of our strategy.

A. Multi-view Surface Reconstruction

Reconstructing 3D objects from multiple images has been investigated for many years in the field of computer vision [7].
Long ago, before the era of deep learning, classic multi-view stereo (MVS) methods [8] attempted to extract the depth of
a scene by point feature matching across neighboring views [9, 10, 11]. In these cases, a lossy post-processing step (e.g.
volumetric fusion [12]) together with Poisson Surface Reconstruction algorithm [13] are needed to obtain a 3D watertight
surface reconstruction from depth, which makes this process highly tedious and inefficient. Another alternative is to represent
3D shapes with a voxel grid [14, 15], but the resolution is limited due to the high memory requirements of three-dimensional
voxel grids.

Early deep learning-based approaches proposed training neural models to perform subtasks of the MVS pipeline, such as
feature matching [16, 17, 18] or depth fusion [19, 20], or even inferring depth maps directly in an end-to-end approach [21, 22].
However, a prior calibration of the cameras is usually required, which limits their potential to very controlled scenarios. Normally
the camera parameters are unknown, so Structure-from-motion (SfM) methods [23] are used to estimate them and produce a
sparse 3D reconstruction.

In contrast to these works, IDR is a neural network that provides an accurate watertight 3D surface reconstruction only
using weak 2D supervision during optimization. The architecture also optimizes the camera parameters given a noisy linear
initialization (e.g. obtained with COLMAP [24, 25]), so no prior camera calibration is strictly needed. Thus, IDR refines the
camera projection matrices in order to represent the surface of an object accurately in an end-to-end approach, without low-
resolution problems due to memory requirements and only needing one post-processing step: the Marching Cubes algorithm [26],
which retrieves the reconstructed surface from the implicit representation.
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B. Implicit Neural Representation

Explicit 3D representations such as point clouds [27, 28], meshes [29, 30], volumetric grids (voxels) [31, 32], or octrees [33],
are the most intuitive ways to represent three-dimensional space, but have limited geometric quality due to the discrete nature
of their underlying representations. On the other hand, the implicit representation of a surface defined as a zero-level set of a
function allows flexibility and expressiveness without suffering the effects of discretization.

For this reason, neural implicit functions have recently emerged as an effective representation of 3D geometry [34, 35, 36,
37, 38] and appearance [39, 40, 41, 42, 5]. The main idea is to represent the geometry as a zero-level set of a function modeled
by a neural network, in order to describe the information of a 3D point as the output of that network, which allows representing
surfaces with arbitrary shapes and topologies. Most of these methods require 3D supervision, but several recent works have used
differentiable rendering to train directly with 2D images [5, 42, 4]. This is the case of IDR, which is composed of a geometry
network that models a Signed Distance Function (SDF) to its zero-level set to represent the surface implicitly, together with
a differentiable neural renderer. This allows the renderer to backpropagate the loss to the implicit network parameters, and
optimize the geometry using only 2D supervision and obtaining high-detailed 3D reconstructions.

C. Clothed Human Reconstruction

There are numerous efforts devoted to reconstructing 3D human bodies from multi-view cameras. One way to approach
this problem is to use human statistical models of the full-body, like SCAPE [43], Total Capture [44] or SMPL and follow-
ups [3, 45, 46], that encode 3D pose and shape with a small number of parameters. Accordingly, several deep learning approaches
have been proposed to predict these parameters from 2D images [47, 48, 49, 50]. These low-dimensional parametric models
allow for efficient approaches robust to in-the-wild images, but the geometry they describe is limited to represent an undressed
body and lacks the detail for capturing clothes. To address this limitation, a number of works extend SMPL with displacement
maps to represent clothes [51, 52, 53]. However, these approaches are too restricted by the SMPL body topology, and the cloth
displacements they can predict are typically for relatively tight clothes.

In contrast, non-parametric representations such as silhouette convex hulls [54], geometry images [55], front/back depth map
composition [56] or implicit function representations [37, 57], are an alternative to gain expressiveness for cloth capture. Those
approaches based on implicit functions, PIFu [37] and PIFuHD [57], are arguably the current state-of-the-art. However, despite
providing highly detailed clothing reconstructions, they are still constrained to relatively controlled scenarios with humans
standing in simple poses. Recent works have combined differentiable renderers with deep neural networks [5, 42, 4], which
allows obtaining impressive reconstruction results without needing so many input camera views. Nonetheless, when camera
views are too sparse, these methods struggle to reconstruct 3D humans accurately, as shown in [2].

An interesting line of research is to combine the robustness of parametric models and the flexibility of non-parametric
representations. Along this line, we find approaches that extend SMPL with voxels [58, 59], and more recently, with implicit
functions [60, 61, 46]. The idea of our work is completely related to the latter, since we intend to leverage the advantages
of parametric and non-parametric models by extending SMPL with an implicit function: IDR. Although these previous works
retrieve rich geometric detail, their architectures are not as precise as IDR, and none of them generates novel views. In our
case, we take advantage of IDR’s ability to produce high-detailed 3D reconstructions and enhance it in the specific application
of human body reconstruction, using SMPL as a prior.

III. METHOD

This section first describes the dataset used in the project, as well as the preprocessing steps followed to prepare the data for
use. Then, the proposed method is exposed, explaining in detail how IDR works, and how its behavior changes when adding

(a) Dennis (b) Mei (c) Eric (d) Claudia

Fig. 2: 3D models of the Renderpeople subset used in this work.
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(a) Blender setup (b) Camera view (of green camera) (c) Render

Fig. 3: Rendering process with Blender: given a setup (a), for each camera view (b) we render an RGB image (c).

an SMPL model as a prior. Finally, we describe the attention mechanism we propose (mostly as future work), but which has
been superficially explored in this thesis.

A. Data

The data used in this work consists of two women and two men from the Renderpeople dataset [62]. Figure 2 shows the
corresponding names, which will be used during the paper. Renderpeople provides 3D textured models, which are useful for
further evaluation of the IDR surface reconstruction, but not for IDR training. As aforementioned, IDR needs RGB images
from different viewpoints, masks indicating the object to be reconstructed, and a coarse initialization of the corresponding
cameras. Therefore, the first step in our project is to prepare the data properly.

1) Image Rendering: We use the Blender software tool [63] to render multi-view RGB images from the 3D model provided
by RenderPeople, which allows us to control the scene in terms of lighting, number of cameras, and position, among others.
Specifically, we used four light sources to maintain an approximately constant illumination throughout the body, and rendered
32 images per 3D model with a resolution of 667x1002 pixels. This process is shown in Figure 3 with only eight cameras for
visualization purposes.

2) 2D Masks: Once the images have been rendered, the next step is to create a 2D mask of the object we want to reconstruct.
To do this, as we control the rendering of the images with Blender, we simply assign an eccentric color to the background of
the image and apply a color-based thresholding to segment each person.

3) Coarse Camera Initialization: An approximate initialization of the camera parameters used to render the images is also
needed. For this purpose, we use COLMAP [24, 25], a general-purpose structure-from-motion and multi-view stereo pipeline
that allows us to obtain an estimation of the camera projection matrices.

4) Camera Normalization: The last step in order to use vanilla IDR is to normalize the cameras so that the visual hull of
each person is contained in the unit sphere. The reason for this is explained in detail in Section III-B. By using Blender to
create synthetic data we could have directly placed the cameras appropriately, but we wanted to simulate a real scenario and
explore the difficulties this would pose and how to overcome them.

To accomplish that, we normalize the 3D body point cloud that COLMAP provides when estimating the cameras so that all
the points of the cloud are contained inside the unit sphere. Specifically, we compute a similarity transformation T , consisting
of a translation and a scaling, that takes the original points pi = [xi, yi, zi]

T to a new set of points p̂i = [x̂i, ŷi, ẑi]
T so that

their centroid is the coordinate origin [0, 0, 0]T and the Euclidean distance to the farthest point from the origin is 1. This
transformation is represented as

T =


s 0 0 tx
0 s 0 ty
0 0 s tz
0 0 0 1

 , s =
1

max(d(pi, c))
, t =

txty
tz

 = −s

cxcy
cz

 = −sc, (1)

where c = [cx, cy, cz]
T is the centroid of the original points pi, d(pi, c) is the Euclidean distance between each point and

the centroid, s is the scaling factor as the inverse of the distance from c to the farthest point pi, and t is the corresponding
translation vector that takes the cloud center to the coordinate origin.

To better understand how this transformation works, we present the result of applying T to a point p̃i = [pi, 1]
T in

homogeneous coordinates:

T p̃i =


s 0 0 tx
0 s 0 ty
0 0 s tz
0 0 0 1



xi
yi
zi
1

 =


s 0 0 −scx
0 s 0 −scy
0 0 s −scz
0 0 0 1



xi
yi
zi
1

 =


s(xi − cx)
s(yi − cy)
s(zi − cz)

1

 =

[
s(pi − c)

1

]
= ˜̂pi (2)
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(a) Original: top view (b) Original: front view (c) Original: side view

(d) Normalized: top view (e) Normalized: front view (f) Normalized: side view

Fig. 4: Normalization of a cloud and camera matrices (a, b, c) so that the result (d, e, f) is contained inside the unit sphere.

As observed, multiplying the points pi by T is equivalent to first translating pi to the origin and then scaling the resulting
points by a scaling factor s, finally obtaining the desired p̂i.

Given a projection matrix P , P̂ = PT−1 is a new camera matrix such that the visual hull of each person is contained inside
the unit sphere. To prove it, we denote by x the two-dimensional point that corresponds to the projection of a 3D point X
with a matrix P , such that x̃ = PX̃ in homogeneous coordinates. Then

x̃ = PX̃ = PT−1TX̃ = P̂
˜̂
X, (3)

where P̂ = PT−1 and ˜̂
X = TX̃ , being X̂ the 3D point normalized inside the unit sphere, as demonstrated in Equation 2.

This normalization process is visually presented in Figure 4.

B. Implicit Differentiable Renderer

IDR is an end-to-end neural architecture system that learns unknown geometry from masked 2D images and a noisy camera
initialization. To accomplish that, Yariv et al. [4] represent the surface implicitly with an SDF modeled by a neural network,
and the RGB color of each pixel as a differentiable function that depends on three unknowns: geometry, with parameters
θ ∈ Rm; appearance, with γ ∈ Rn; and cameras, as τ ∈ Rk. The notations used in the explanation below are depicted in
Figure 5.

1) Geometry: The geometry Sθ is implicitly represented as the zero level set of an MLP f :

Sθ =
{
x ∈ R3|f(x; θ) = 0)

}
(4)

We refer to this network f as ImplicitNet, and it models a Signed Distance Function (SDF) to its level zero set. This means
that the main objective is to optimize the ImplicitNet parameters θ so that the network output is approximately 0 when the
input point x is on the surface of interest.

2) Appearance: The appearance is described as the factors that define the surface light field excluding the geometry, i.e.
the surface bidirectional reflectance distribution function (BRDF) describing the reflectance and color properties of the surface,
and the scene’s lighting conditions. See [4] for more details.

To understand how IDR represents the appearance of a scene, being p a pixel from an input image I , the ray through p is
denoted by Rp(τ) = {cp + tvp|t > 0}, where cp = cp(τ) is the unknown center of the respective camera and vp = vp(τ) the
vector pointing from cp towards pixel p. The first intersection of the ray Rp and the surface Sθ is represented as x̂p = x̂p(θ, τ).
The incoming radiance along Rp, that is, the amount of light reflected from Sθ at x̂ in direction -v reaching c, determines the
rendered color of the pixel Lp. Note that for this to work, the object of interest must be contained in the unit sphere, since
being the surface Sθ initialized as such, this first intersection between the ray Rp and Sθ will be on the surface of the sphere,
and then deformed to adapt to the desired shape.
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Fig. 5: Setup and notations for a given camera, RGB image and 3D surface.

Lp is a function of the surface properties and the incoming radiance at x̂p, which in turn are represented by the surface point
x̂p, its corresponding surface normal n̂p = n̂p(θ), the viewing direction vp, and a global geometry feature vector ẑp = ẑp(x̂p; θ).
This feature vector allows the renderer to reason globally about the geometry Sθ, as it encodes the geometry relative to the
surface sample x.

The surface light field that determines the rendered color of a pixel p is therefore modeled as

Lp(θ, γ, τ) =M(x̂p, n̂p, ẑp, vp; γ), (5)

where M is another MLP that we name RenderNet. Lp is used in a loss comparing it with the pixel input color Ip to
simultaneously train the model’s parameters θ, γ, τ . To backpropagate this loss from RenderNet to ImplicitNet, and thus
modify the geometry only using mask 2D images, the intersection point x̂(θ, τ) is represented with parameters θ, τ by slightly
modifying f . Then, the differentiable intersection of the ray R(τ) and the surface Sθ can be represented by the formula:

x̂(θ, τ) = c+ t0v −
v

∇xf(x0; θ0)v0
f(c+ t0v; θ) (6)

3) Loss: Let Ip, Op be the RGB and mask values, respectively, corresponding to a pixel p in an image taken with camera
cp(τ) and direction vp(τ), where p ∈ P indexes all pixels in the input collection of images, and τ ∈ Rk represents the
parameters of all the cameras in scene. The loss function has the form:

loss(θ, γ, τ) = lossRGB(θ, γ, τ) + ρlossMASK(θ, τ) + γlossE(θ) (7)

This loss is trained on mini-batches of pixels in P , and for simplicity we denote by P the current mini-batch. For each
p ∈ P the sphere-tracing algorithm [12, 20] is used to obtain the first intersection point, cp + tp,0vp, of the ray Rp(τ) and
Sθ. Let P in ⊂ P be the subset of pixels p where intersection has been found and Op = 1 (i.e. corresponds to the foreground
mask). Being Lp defined as in Equation 5, the RGB loss is

lossRGB =
1

|P |
∑
p∈P in

|Ip − Lp(θ, γ, τ)| , (8)

where |·| represents the L1 norm. Let P out denote the indices in the mini-batch for which no ray-geometry intersection or
Op = 0 (i.e. do not correspond to the foreground mask). The mask loss is

lossMASK(θ, τ) =
1

α |P |
∑

p∈P out

CE(Op, Sp,α(θ, τ)), (9)

where CE is the cross-entropy loss. Lastly, f is enforced to be approximately an SDF as in [64], incorporating the Eikonal
regularization:

lossE(θ) = Ex(‖∇xf(x; θ)‖ − 1)2, (10)

where x is distributed uniformly in a bounding box of the scene.
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Fig. 6: Overview of our system.

4) Training: Each multi-view image collection is trained in an iterative process. For each iteration, 2048 pixels p ∈ P are
randomly sampled from each image, and the corresponding rays Rp are traced for each pixel. Then, from the intersections
between these rays and the surface Sθ, the loss in Equation 7 is minimized to optimize the parameters of ImplicitNet and
RenderNet. After training, the Marching Cubes (MC) algorithm [26] is used to retrieve the reconstructed surface from f .
MC is a simple but intuitive algorithm that generates a triangular mesh by iterating (marching) over a uniform grid of cubes
superimposed over a region of an implicit function. If the eight vertices of a cube are positive (negative), the cube is completely
above (below) the surface and no triangular faces are generated. Otherwise, the surface crosses the cube, so some triangular
faces and vertices are extracted. After performing the same process for all cubes, the resulting triangular faces are joined to
generate the reconstructed mesh.

C. Proposed Method

In this work, we propose a method to reconstruct 3D human bodies from 2D images based on IDR and SMPL-X [45], a
parametric model that combines the realistic 3D vertex-based model SMPL [3] with the FLAME [65] head and MANO [66]
hand models. Specifically, we want to explore the contribution of this parametric model to the ability of IDR to accurately
represent 3D shapes in difficult situations with sparse views. The pipeline of our system is presented in Figure 6.

IDR has been designed to reconstruct objects of all types, so the geometric initialization of ImplicitNet causes the SDF to
start representing approximately a unit sphere. In our case, however, the objects to be reconstructed are human bodies, so the
network can be initialized to represent a coarse human model instead, and thus help IDR to converge to the desired shape
faster and in more difficult situations. To do so, the first step is to obtain the 3D human model from our data.

1) Skinned Multi-Person Linear Model (SMPL): SMPL [3] is a skinned and realistic 3D vertex-based model that accurately
represents body shapes in natural human poses. One of its follow-ups is SMPL-X [45], which extends SMPL with an expressive
face and fully articulated hands. Specifically, SMPL-X combines SMPL with the FLAME head model [65] and the MANO

(a) Hand artifact (b) Body orientation error

Fig. 7: FrankMocap fails to estimate Dennis’ hand (a) and Claudia’s body orientation (b).
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(a) Dennis (b) Mei (c) Eric (d) Claudia

Fig. 8: Final SMPL models estimated with FrankMocap.

hand model [66], and is the one used as a prior to initialize IDR, as it allows us to represent the 3D shape more accurately.
For simplicity, we refer to SMPL-X as SMPL.

To estimate the parameters of the SMPL model we use FrankMocap [67, 68], a 3D motion capture system that provides
3D pose estimation from a single image. As shown in Figure 7, there are some artifacts in the estimations of FrankMocap.
In the case of Dennis, the hand in the pocket is not well represented, so we estimate the parameters of the SMPL model
for all 32 images and average their values, resulting in a better representation. Furthermore, FrankMocap completely fails to
estimate Claudia’s SMPL parameters in one image, so we cannot average the values of all images and we have to decide which
estimation is more appropriate. Thus, obtaining the models is a semi-manual task that requires supervision to choose the most
appropriate parameters for each person. Figure 8 shows the resulting SMPL model for each person, and the next step is to
integrate them in IDR.

2) Cameras and SMPL Alignment: As detailed in Section III-A4, we need to normalize the camera parameters so that the
visual hull of each person is contained in the unit sphere in order to use vanilla IDR. In this case, as the implicit surface is
initialized with an SMPL model, if the visual hull is aligned with the model, IDR would not have to make extra effort during
the early training stage to adjust the initial surface (SMPL model) to the desired person shape (which is determined by the
visual hull). Although the initial shape is no longer a unit sphere, the visual hull still has to be contained in it, since IDR’s
algorithm for finding the intersecting point between a visual ray and the surface implicitly modeled by ImplicitNet assumes
that this implicit surface is contained in the unit sphere.

Therefore, the first step to normalize the cameras in our system is the same as when using vanilla IDR: make the visual
hull centered and contained in the unit sphere, thus obtaining the projection matrices P̂ = PT−1, as shown in Equation 3.
In this step, recall that the point cloud provided by COLMAP when estimating the cameras is also normalized with T . Next,
we sample the SMPL model to obtain a dense point cloud, and normalize it in the same way. Finally, we use the Iterative
Closest Point (ICP) algorithm to align the two point clouds. This algorithm takes as an input two point clouds and an initial
transformation that aligns them approximately, which in this case is an identity matrix, since both point clouds are centered
and contained within the unit sphere. ICP then iteratively refines the transformation to adjust the two point clouds. Once this
refined transformation matrix Talign is obtained, we normalize the camera projection matrices with P̂align = P̂ T−1align so that
their visual hull is aligned with the SMPL model.

3) Extending IDR with SMPL: ImplicitNet models the geometry as a zero level set of an SDF, i.e., the parameters of this
network are optimized so that when the input is a point of the desired surface, the output (SDF) is approximately 0. With this
in mind, one of our first ideas to integrate SMPL into the IDR architecture was to add the loss

lossSMPL =
∑
v∈V
|f(v; θ)| , (11)

to Equation 7, which would force the ImplicitNet output (f(v; θ)) to be minimized at the vertices of the SMPL model v ∈ V .
In this way, the surface would converge to these vertices. However, the SMPL model does not represent in detail the person
we want to reconstruct in terms of clothes, hair, or face, so the final result would be too imprecise. A possible solution is
to schedule the lossSMPL weight to be larger in the early stages of training, and thus force the network to converge to the
SMPL model rapidly, and then lower this weight to let the IDR architecture take care of detailing the reconstruction.

This loss schedule involves another parameter to optimize and is not an efficient approach, so we propose another strategy:
to directly initialize the ImplicitNet parameters so that, instead of representing a unit sphere, they describe the corresponding
SMPL model. In this way, the network starts directly with an approximate shape of the person, and the objective of the
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(a) Dennis (b) Mei (c) Eric (d) Claudia

Fig. 9: Implicit representation of the SMPL models with IGR, with small artifacts (a, b, d) and severe errors (c).

architecture is to add detail to it. This method achieves the same as proposed above with the extra lossSMPL, but in an elegant
and more intuitive way.

Yariv et al. [4] use [69] to initialize the ImplicitNet weights such that the SDF they approximate is that of a unit sphere.
In our case, we use Implicit Geometric Regularization (IGR) [64], a deep learning architecture that learns implicit signed
distance representations directly from raw point clouds. The IGR neural network is identical to ImplicitNet, except that the
latter includes positional encoding. Therefore, we slightly modify the IGR network so that its parameters are the same as those
of ImplicitNet, and we can load the weights from one to the other directly.

IGR tries to implicitly represent a surface that is contained inside the input point cloud, so instead of using only the (few)
vertices of the SMPL model as input, we randomly sample 250,000 points to ensure an appropriate representation of the SMPL
model. Figure 9 shows the result of using Marching Cubes on the implicit representation produced by IGR for each SMPL
model. As can be seen, this representation is less detailed than Figure 8 (faces), and some artifacts appear. This affects the
potential of our system, since if the prior used to initialize IDR presents severe artifacts, IDR will have to make an extra effort
to correct these errors first before focusing on detailing the coarse model.

D. Attention Mechanism

Alongside the development and implementation of the proposed method, we also identify the part of the body where
IDR struggles to produce a detailed reconstruction: the head, and we propose a strategy for the network to focus on it. As
aforementioned, for each iteration IDR samples 2048 random pixels of each 2D image, trace the corresponding rays and
minimize the loss at the intersection points between these rays and the surface. Thus, our idea is to sample more often the
pixels corresponding to the head. This, although very simple, serves to identify whether by emphasizing the head we can
improve the IDR reconstruction, or if on the contrary the detail of the head is limited by the power of the IDR architecture.
As will be explained in Section V, we can indeed improve IDR reconstructions by focusing on parts such as the head. In
Section VII we discuss a proposal for a more elaborate and robust attention mechanism for IDR to automatically detect the
parts that need more attention, which is currently under development.

IV. EXPERIMENTS

In this section, the experiments performed in the thesis, which aim to corroborate the formulated hypothesis, are described
in detail. To do so, we consider not only 32, but also 16, 8, 4, 2, and 1 images per 3D model, and in all cases when we
reduce the number of images by half, the symmetry of the cameras is maintained. We add another case: 2*, in which the two
cameras are not symmetrical (and different for each person), as shown in Figure 10. The idea is to study the behavior of the
architecture in a variety of scenarios with different levels of difficulty.

A. Setups

In order to maintain a structured results section, we number the experiments (e.g. Exp. 1) and add a title to them to understand
their purpose. But before that, we expose the different configurations we used.

1) Vanilla IDR: The first configuration, named IDR, consists on using the vanilla IDR with unit sphere initialization.
2) SMPL Model Initialization: Our system configuration is named IDR+SMPL, as it uses the SMPL model to initialize

IDR.
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(a) Blender camera setup (b) Render (back) (c) Render (side)

Fig. 10: Claudia 2* scenario with two sparse cameras.

B. Exp. 1: IDR and IDR+SMPL using different number of views

In this first experiment, we use both IDR and IDR+SMPL to reconstruct the four persons in the dataset for the 32, 16,
8, 4, 2, 2*, and 1 number of images. We want to evaluate the ability of vanilla IDR to produce detailed reconstructions of
clothed 3D human bodies, and test whether initializing the IDR ImplicitNet with the corresponding SMPL models improves
the performance of the network.

C. Exp. 2: IDR and IDR+SMPL in casual and A-pose subsets

In the second experiment we compare the performance of IDR and IDR+SMPL when the 3D models are in a casual or in
an A-pose, since in casual situations there are more occlusions and parts of the body that are not seen from some points of
view, thus making the reconstruction more difficult. In our case, Dennis and Mei are in a casual pose, and Eric and Claudia
are in an A-pose, so we test both systems in these two subsets.

D. Exp. 3: IDR and IDR+SMPL convergence speed

The last experiment performed with these two configurations is intended to test whether using the SMPL model as prior
(IDR+SMPL) the architecture converges faster. For this purpose, we evaluate the metrics at different time instants during the
training stage.

E. Exp. 4: Attention mechanism

As will be shown in detail in Section V, the part of the body where IDR struggles to achieve a detailed reconstruction is the
head. Therefore, we perform a series of experiments to test whether this lack of detail is due to the fact that IDR is not able to
reconstruct complex areas such as the face, or if by emphasizing this area the quality improves. As mentioned, to corroborate
this, a simple strategy is implemented to sample more points on the head.

(a) SMPL vertices (b) SMPL render (front) (c) SMPL render (side) (d) Head BB (front) (e) Head BB (side)

Fig. 11: FLAME vertices (a, in green) are projected onto the RGB images (b, c) to determine the head bounding boxes (d, e).
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# Images Experiment PSNR (dB) ↑ Chamfer ↓ P2S ↓
Mean Std Dev (cm) (cm)

IDR 25.01 0.53 0.63 0.6732
IDR+SMPL 24.98 0.65 0.72 0.72

IDR 24.98 0.50 0.93 0.9416
IDR+SMPL 24.45 0.58 1.25 1.17

IDR 25.95 0.91 1.33 1.368
IDR+SMPL 25.40 0.59 1.24 1.14

IDR 26.05 0.47 8.10 8.894
IDR+SMPL 25.85 0.70 8.21 7.79

IDR 25.88 0.69 46.70 49.232
IDR+SMPL 25.61 1.17 26.46 23.35

IDR 26.15 0.97 25.42 56.142+
IDR+SMPL 26.58 0.55 21.88 35.87

IDR 25.69 0.86 66.01 75.681
IDR+SMPL 26.36 0.61 32.76 32.16

TABLE I: Exp. 1 results. Comparison between IDR and IDR+SMPL performance using different number of views. Higher
PSNR, lower Chamfer and lower Point-to-Surface (P2S) are better.

(a) PSNR (dB) ↑ (b) Chamfer (cm) ↓ (c) P2S (cm) ↓

Fig. 12: Our system performs better than vanilla IDR in scenarios with very sparse views in terms of (b) Chamfer and (c)
Point-to-Surface distances (in centimeters), while maintaining a similar (a) PSNR.

First, to identify the pixels that correspond to the head for each image automatically, a specific face detection network could
be used, but instead, we use the SMPL model that we have already obtained for each person and image. SMPL uses the
FLAME model for the head, so we can obtain the head by simply extracting the vertices of the model that correspond to
FLAME. By projecting these vertices on each image, the corresponding bounding box can be easily determined, as shown in
Figure 11.

In Section III-B we explain that IDR samples 2048 random pixels from each image in each iteration and optimizes the
network parameters by minimizing the loss for each intersection point. To sample more points from the head, we limit the
sampling range to the head bounding box (rather than the entire image) every X iterations, to ensure that the network parameters
are optimized specifically for the head periodically. Thus, the goal of this last experiment is to determine how much the 3D
reconstruction of a person improves by emphasizing the head, so we sample this area every 2, 4, 8, 16, 32, and 64 iterations
(defined as epoch step). The corresponding experiments are referred to as HE (Head Emphasis), being HE 64 the experiment
with an epoch step of 64 iterations.

V. RESULTS

The results obtained in the proposed experiments are presented in this section. First of all, we describe the metrics used
in the evaluation, which help us to corroborate the hypothesis formulated. Then, the results are presented in various formats:
tables, graphs, image collages, etc., as we consider it appropriate to better understand the implications of our system from
different points of view. All experiments have been performed with a GTX 2080 Ti with 11GB of RAM, so the training times
provided are obtained using this GPU.

A. Metrics

The evaluation is carried out both qualitatively and quantitatively, using as metrics the Peak-Signal-to-Noise-Ratio (PSNR)
for the renders and the Chamfer-L1 and Point-to-Surface (P2S) distances for the 3D reconstructions.
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(a) RGB images (b) SMPL model (c) IDR (d) IDR+SMPL (e) Ground truth

Fig. 13: Results obtained with (c) IDR and (d) IDR+SMPL using 32 (a) RGB images. With so many views, the results of
vanilla IDR are already accurate, and IDR+SMPL helps to add a few detail in some cases (or smooth the result in others).

1) Peak-Signal-to-Noise-Ratio (dB): PSNR is used to evaluate the quality of the renders provided by IDR (f ) with respect
to the corresponding ground truth images (g) as

PSNR = 20log10(
MAXf√
MSE

), MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

‖f(i, j)− g(i, j)‖2 , (12)

where MAXf = 1 and m = 1002, n = 667 are the number of rows and columns of each image respectively. We provide
the mean and standard deviation (Std Dev) values from the PSNR computed over each rendered image. The higher the PSNR
the better.

2) Chamfer distance (centimeters, cm): One of the metrics used to evaluate the 3D reconstructions of our system is the
Chamfer distance, computed between the vertices of the predicted reconstruction (F ) and the vertices of the ground truth 3D
model (G) with

Dchamfer(F ;G) = Dchamfer(F,G) +Dchamfer(G,F ), (13)

where Dchamfer(F ;G) represents the total Chamfer distance between the two point clouds F and G, Dchamfer(F,G) is
the unidirectional (Chamfer) distance from point cloud F to G as

Dchamfer(F,G) =
1

|F |
∑
f∈F

dG(f), (14)
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where dG(f) is the distance between a point f ∈ F and its closest point in G; and Dchamfer(G,F ) is the same but in the
other direction. Lower Chamfer distance is better.

3) Point-to-Surface distance (centimeters, cm): The other metric used to evaluate the quality of the 3D reconstructions is
the P2S distance, which computes the distance between the vertices of the predicted reconstruction (V ) and the mesh of the
ground truth 3D model (M ) as

DP2S(V ;M) = DP2F (V,M) +DF2P (M,V ), (15)

where DP2F (V,M) is the mean squared distance of each point in V to its closest triangular face in M , and DF2P (M,V ) is
the mean squared distance of each triangular face in M to its closest point in V . Lower P2S distance is better.

B. 3D Reconstruction Alignment

In order to evaluate the 3D reconstructions accurately, we use the Iterative Closest Point (ICP) algorithm to align the IDR
output with the ground truth of the 3D model. As explained in Section III-C2, this technique starts from two roughly aligned
point clouds, so the first step is to normalize both of them to be contained in the unit sphere, and then align them. Finally,
we denormalize both point clouds to have the dimensions of the 3D ground truth model, which are in centimeters, so that we
can calculate the Chamfer and P2S distances in centimeters.

Another thing to keep in mind is that the ground truth of each 3D model has a different number of vertices, so we have
sampled 100,000 equidistant points from the ground truth surface to make the evaluation more consistent regardless of the
reconstructed person.

C. Exp. 1 results: IDR and IDR+SMPL using different number of views

In Table I we present a comparison of the evaluation of vanilla IDR and our system (IDR+SMPL) in the different scenarios
proposed, with different numbers of images in each. As observed, the PSNR remains more or less constant in all cases, and
even improves (although with more variance) in situations with fewer images. This is due to the fact that, since the IDR training
is based on supervision with RGB images, using very few views the network overfits more to them and generates better results.
The opposite happens in the case of 3D reconstruction, since having fewer views of the object, it is more difficult to adapt the
surface properly, so the Chamfer and P2S distances increase as the number of images decreases.

In these difficult situations, it seems that using an SMPL model as a prior improves the 3D reconstruction considerably,
as the distances decrease by up to half in some cases. This is even more evident in the case of a single view, since IDR is
not able to generate the surface correctly because it does not have information about the area that is not seen in the image.
However, the SMPL model has a very similar shape to the person in question, so using it as a prior implies that in these areas
where there is no visibility, the surface will be more in line with the person. It is the same for the 2 and 2* image scenarios,
where using the SMPL model greatly improves the accuracy of the 3D reconstruction.

This reasoning is shown visually in Figure 12, where we can see how the Chamfer and P2S distances are larger in the cases
where fewer views are available, but using the SMPL model as a prior, the 3D reconstruction improves. We also observe that
the renderings do not depend so much on the number of images in question, as the PSNR remains similar in all cases, and
even drops a little more when 16 or more images are used.

On the other hand, with 32 and 16 images the results are better when the SMPL model is not used, so it seems that in
these cases IDR has a sufficient number of views to reconstruct a 3D model accurately without any extra help, as shown in

# Images Experiment PSNR ↑ Chamfer ↓ P2S ↓
(dB) (cm) (cm)

IDR 25.45 0.76 0.5432
IDR+SMPL 25.42 1.00 0.73

IDR 25.05 1.31 1.0616
IDR+SMPL 25.00 1.29 1.00

IDR 26.77 1.97 1.778
IDR+SMPL 25.69 1.78 1.36

IDR 26.02 10.91 10.574
IDR+SMPL 25.88 12.63 12.21

IDR 25.46 72.75 71.762
IDR+SMPL 26.46 34.28 29.61

IDR 26.36 12.15 11.832+
IDR+SMPL 27.01 10.65 9.93

IDR 25.75 59.97 58.581
IDR+SMPL 26.34 55.64 54.29

(a) Casual pose

# Images Experiment PSNR ↑ Chamfer ↓ P2S ↓
(dB) (cm) (cm)

IDR 24.57 0.5 0.832
IDR+SMPL 24.53 0.43 0.71

IDR 24.92 0.54 0.8216
IDR+SMPL 23.9 1.21 1.34

IDR 25.14 0.69 0.958
IDR+SMPL 25.1 0.7 0.91

IDR 26.07 5.28 7.24
IDR+SMPL 25.81 3.79 3.36

IDR 26.3 20.66 26.72
IDR+SMPL 24.77 18.64 17.09

IDR 25.94 40.19 100.462+
IDR+SMPL 26.16 31.6 61.8

IDR 25.62 72.06 92.791
IDR+SMPL 26.37 9.88 10.03

(b) A-pose

TABLE II: Exp. 2 results. Comparison of IDR and IDR+SMPL performance on casual and A-pose subsets.
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(a) Casual pose (b) A-pose

Fig. 14: Chamfer distance of IDR and IDR+SMPL for the (a) casual and (b) A-pose subsets. Our system works better with
A-pose people, substantially improving the results in cases of very sparse views.

(a) 32 RGB Images (b) 4 RGB Images (c) 1 RGB Image

Fig. 15: Top: PSNR (dB), higher is better. Bottom: Chamfer distance (cm), lower is better. Measuring the speed convergence
of IDR and IDR+SMPL in three scenarios: (a) 32, (b) 4, and (c) 1 RGB images.

Figure 13. This is not a problem, since our interest is in improving the results in the cases where IDR struggles the most, i.e.,
with sparse camera views.

D. Exp. 2 results: IDR and IDR+SMPL in casual and A-pose subsets

We present the evaluation for the casual and A-pose subsets in Tables IIa and IIb, respectively.
As can be seen, with a casual pose the 3D reconstruction results are worse in general, and although improved by using the

SMPL model as a prior, in the 1 or 2 image scenarios the reconstruction quality is not good at all. In the specific case of
1 image, if the person has self-occlusions, IDR loses a lot of visibility and is not able to adapt the surface properly. As the
SMPL model does not represent the pose of the person accurately, it is also not able to compensate for the lack of views.
On the other hand, it seems that the A-pose results are considerably better when using the SMPL model, probably because
the SMPL model of a person in an A-pose is much simpler to estimate than that of a casual pose, so the prior more closely
resembles the shape of the person.

Figure 14 visually presents the improvement of our system with respect to vanilla IDR in the specific case of the Chamfer
distance in the casual pose and the A-pose. Specifically, we observe how this improvement is indeed more substantial in the
case of the A-pose, since it is easier to accurately obtain the corresponding SMPL model.
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Fig. 16: Evolution of IDR and IDR+SMPL implicit surfaces for (top) 16 and (bottom) 1 RGB images. Using an SMPL model
as prior helps with the reconstruction, specially in sparse-view scenarios.

E. Exp. 3 results: IDR and IDR+SMPL convergence speed

In Figure 15 we present the PSNR and Chamfer evaluation of IDR and IDR+SMPL at different time instants for 32, 4 and
1 views. The P2S distance is not exposed since its behavior is very similar to that of the Chamfer.

In the case of PSNR we observe how using the SMPL model as a prior effectively accelerates the convergence of the model
regardless of the number of images, since as we have commented above, the renderer is not as affected by the available views.
This improvement of up to 4 dB using the SMPL model is maintained over a long period of time, so the convergence is faster.
Nonetheless, it must be taken into account that in the case of IDR+SMPL the SMPL model has been estimated a priori, and
IGR has been used to represent it implicitly, which implies an extra time that is not being considered in this experiment.

In the case of the Chamfer distance, the difference between using or not the SMPL model as a prior is substantial, since
after a few seconds we already find cases in which the distance is more than 100 times smaller in IDR+SMPL than in IDR.
This is because initializing the surface with a model that roughly represents the desired surface greatly reduces the distance
between the two. If instead the initialization is a sphere, the system takes much longer to reduce the error, especially in cases
with sparse views. Using 32 views the Chamfer distance of IDR ends up converging to a value similar to that of IDR+SMPL
(although requiring more time), but when the views are sparse IDR+SMPL presents better results.

An example of the evolution of IDR and IDR+SMPL in the case of 16 and 1 number of images is presented visually in

Experiment Epoch Step PSNR (dB) ↑ Chamfer ↓ P2S ↓
Mean Std Dev (cm) (cm)

IDR - 25.01 0.53 0.63 0.67
IDR+SMPL - 24.98 0.65 0.72 0.72

HE 64 25.66 1.22 0.71 0.79
HE 32 25.39 0.88 0.75 0.79
HE 16 25.07 1.31 0.69 0.73
HE 8 24.79 0.96 0.62 0.65
HE 4 24.29 0.46 0.64 0.69
HE 2 24.64 0.88 0.74 0.78

(a) Full-body evaluation

Experiment Epoch Step PSNR (dB) ↑ Chamfer ↓ P2S ↓
Mean Std Dev (cm) (cm)

IDR - 21.16 0.28 0.45 0.77
IDR+SMPL - 21.22 0.31 0.51 0.79

HE 64 22.40 0.70 0.53 0.89
HE 32 22.17 0.22 0.52 0.85
HE 16 22.05 0.52 0.49 0.81
HE 8 21.63 0.39 0.43 0.69
HE 4 21.39 1.55 0.53 0.81
HE 2 22.26 0.50 0.55 0.82

(b) Head evaluation

TABLE III: Exp. 4 results. Comparison between (a) full-body and (b) head evaluations for the different epoch steps.
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Fig. 17: Head emphasis effect in the (top) 3D reconstruction and (bottom) renderings of Dennis face using 32 views. HE 64
means the attention is performed every 64 iterations (epoch step).

Figure 16. As can be seen, using an SMPL model as prior allows for convergence to the desired shape in less time and with
more accuracy. This is especially true in the case of 1 view, as the final IDR reconsturction does not resemble a person, and
IDR+SMPL maintains this shape. Note how in the case of 1 view and IDR+SMPL, the shape of the person starting with the
SMPL model deteriorates over time, causing the result not to be even better. This could be solved by performing a schedule
of the weights that control ImplicitNet, or by freezing its parameters so that IDR would not try to modify them in the first
iterations and would focus more on rendering.

F. Exp. 4: Attention mechanism

Even if we obtain satisfactory 3D reconstructions using many points of view, there are details that IDR does not represent
properly, such as those of the face. As mentioned above, we performed some experiments to see if sampling the head more
often it would gain definition in the reconstruction and renderings. The corresponding results are shown in Table IIIa. Although
minimal improvements in the 3D reconstruction are observed when using an epoch step of 8, the other results do not seem to
indicate that there is any considerable improvement in the renderings or 3D reconstruction by emphasizing the head.

However, it should be noted that we have presented the evaluation of the whole body, so it is normal that if we focus
more on the face, the other parts of the body lose detail. To check whether this strategy specifically improves the area of the
face, we present in Table IIIb the results obtained by evaluating only the head region. In this case, it is observed that the 3D
reconstruction is indeed slightly improved in some cases, again with epoch step 8, and the PSNR is improved in all cases.

To better understand the effect of the epoch step in IDR, we show the reconstructed surface and a rendering of each case
in Figure 17. Indeed, the more often we sample the face, the more details we obtain both at the appearance and geometry
level, being the cases HE 2 and HE 4 the most similar to the ground truth (GT). Even so, there does not seem to be a clear
improvement at the quantitative level in terms of 3D reconstruction, which we think may be due to the fact that the surface
reconstructed by IDR is slightly misaligned with respect to ground truth, so that although visually the result is more defined,
this is not reflected in the metrics.

VI. CONCLUSIONS

In this work, we present a 3D people reconstruction system that effectively combines parametric and non-parametric models.
For this purpose, we make use of an emerging technology in the field of computer vision: implicit neural representation
with differentiable rendering, which allows for reconstructing 3D geometry with only 2D weak supervision. We propose to
combine Implicit Differentiable Renderer (IDR), one of the state-of-the-art architectures that takes advantage of this emerging
technology, with the parametric Skinned Multi-person Linear Model (SMPL), and explore whether we can obtain highly detailed
3D reconstructions of people with our system.

To do so, we use Implicit Geometric Regularization (IGR) to initialize the parameters of the IDR implicit network so that
they represent the SMPL model instead of a sphere. At this point, we prepared a dataset consisting of two women and two
men from the Renderpeople dataset in order to experiment with them. Using different numbers of viewpoints, we managed to
study the behavior of both architectures, IDR and our system (IDR+SMPL), in a variety of scenarios with different levels of
difficulty, evaluating the PSNR (dB), Chamfer and Point-to-Surface (P2S) distances (cm).

The first results show us that using this parametric model as a prior we achieve a considerable improvement in 3D
reconstructions and renderings, and even more in situations with sparse camera views. Not only that, but our system converges
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faster to these results, although the previous steps to obtain the SMPL model and represent it implicitly with IGR must be
taken into account. Starting from the SMPL model, our system is even able to roughly reconstruct parts that are not seen from
any point of view, because although IDR cannot reconstruct what it does not see, initializing the surface so that it is aligned
to the person allows to obtain an approximate reconstruction.

On the other hand, we have performed experiments with subsets in casual and A-poses, which show that our system performs
better when people are in simple A-poses, as the estimated SMPL model is more accurate in these cases. Casual poses present
self-occlusions that complicate the task, so vanilla IDR also performs better in the A-pose subset, since the surface is seen
from most viewpoints.

Finally, we have explored whether giving emphasis to the parts of the body with less detail, i.e., the face, we can improve
the IDR reconstruction. To do so, we decided to sample this area more often, and although quantitatively there does not seem
to be significant improvements, it is visually observed that more details are obtained both in the renderings and in the 3D
reconstruction. This difference in results may be due to a misalignment of the surface, which makes the metrics obtained not
so good. In short, this last experiment has helped us to deduce that IDR can improve its results if it focuses automatically on
the parts with less details, as we propose as a future work.

VII. FUTURE WORK

Although we have concluded the thesis with the expected results and corroborating the hypotheses formulated, we would
like to propose a number of improvements for future systems based on ours, to further improve 3D reconstructions of people
with IDR.

To begin with, as mentioned above, IGR produces artifacts when representing a point cloud implicitly, which affects our
system, because IDR must make an extra effort to correct these errors. IGR optimizes its parameters so that the implicit
surface (modeled by a signed distance function) is contained in the point cloud, but does not take into account what is outside
this cloud. Therefore, we propose to sample points on a uniform grid of the 3D space and add an extra loss that forces the
IGR output for each 3D point to be equivalent to the distance from the point to the point cloud of interest. In this way, we
understand that the surface will be forced to be zero outside the input point cloud.

On the other hand, it seems that in situations with very sparse camera views, although our system starts with a SMPL model
very close to the person, IDR modifies this surface deteriorating it by not having enough points of view. A possible solution
would be to freeze the parameters of the IDR geometry network during the first stage of the training, in order to adapt the
parameters of the rendering network keeping the same surface, which we already know a priori that it is relatively accurate.

Finally, we propose a more advanced strategy of the attention mechanism explained in this work, so that IDR automatically
detects areas of the body with less detail and emphasizes to improve them. This idea is related to [70], whose work is based
on quantifying the uncertainty in 3D implicit representations. In our case, we propose to modify IDR so that, instead of
producing an RGB color output from a point in 3D space (obtained by intersecting a ray and the implicit surface), two values
are produced: the mean and the variance of the color. In this way, IDR could identify which points have more variance, i.e.,
are more uncertain, and devote more attention to improve them. We are currently working on this new project and hope to
improve the reconstruction of 3D people even further.
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[46] Enric Corona, Albert Pumarola, Guillem Alenyà, Gerard Pons-Moll, and Francesc Moreno-Noguer. Smplicit: Topology-
aware generative model for clothed people. In CVPR, 2021.

[47] Christoph Lassner, J. Romero, Martin Kiefel, Federica Bogo, Michael J. Black, and P. Gehler. Unite the people: Closing
the loop between 3d and 2d human representations. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4704–4713, 2017.

[48] Nikos Kolotouros, G. Pavlakos, Michael J. Black, and Kostas Daniilidis. Learning to reconstruct 3d human pose and shape
via model-fitting in the loop. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 2252–2261,
2019.
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