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3.1. Pedestrian Detection in RGB Images (III)

16

YOLO: You Only Look Once
Evaluation

YOLO Detection

Manual Labeling True Positive

False Negative

False Positive

PRECISION
≥ 0.5



RECALL

3.1. Pedestrian Detection in RGB Images (III)
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YOLO: You Only Look Once
Evaluation

YOLO Detection

Manual Labeling True Positive

False Negative

False Positive

PRECISION

99.8 %
77.9 %

≥ 0.5



Label non-pedestrians
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Pedestrian bounding boxes Non-pedestrian bounding boxes
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Similar size and 
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3.2. Non-Pedestrian Detection in RGB Images (I)  
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3.2. Non-Pedestrian Detection in RGB Images (II)  
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Pedestrian bounding boxes Non-pedestrian bounding boxes

11.5 % Pedestrians
88.5 % Non-pedestrians 

Label non-pedestrians

Bounding box class Statistics Width Height Ratio

Pedestrian

Mean 95.3 266.3 2.9

Std. deviation 56.9 145.6 1.0

Non-pedestrian

Mean 111.1 302.5 2.8

Std. deviation 37.9 102.3 0.9

Similar size and 
shape statistics

Pixels
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3.3. Labeling Transfer (I) 
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Constraints

3.3. Labeling Transfer (III)
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LIDAR cannot capture some elements properly

LIDAR Field Of View (FOV) < Camera resolution Minimum area: 70%  

Problems

Minimum # points: 1024



Labeled pedestrian and 
non-pedestrian point clouds
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Labeled pedestrian and 
non-pedestrian point clouds

3.4. Pedestrian Detection in 3D Point Clouds (I)
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Preprocessing

- Downsampling

- Normalization

Original:
7063 points

Downsampled: 
1024 pointsFarthest Point 

Sampling



TRAINING

VALIDATION

3.4. Pedestrian Detection in 3D Point Clouds (II)
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Preprocessing

- Downsampling

- Normalization

Original:
7063 points

Downsampled: 
1024 pointsFarthest Point 

Sampling

Dataset splitting
Scenes #1-9

DATASET 20%

10 Scenes

Scene #10

80%

TEST

Labeled pedestrian and 
non-pedestrian point clouds



ModelNet40 Our datasets

Source CAD models LIDAR sensor

Points density Uniform Not uniform

# classes 40 2

Balanced dataset Yes No

4. Previous Experiments
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Charles R. Qi et al., << Pointnet++: Deep hierarchical feature learning 
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Charles R. Qi et al., << Pointnet++: Deep hierarchical feature learning 
on point sets in a metric space >>, Standford University, 2017

PointNet++ datasets: ModelNet40

ModelNet40

PointNet++

4. Previous Experiments

4.1 4.2

ModelNet40 Our datasets

Source CAD models LIDAR sensor

Points density Uniform Not uniform

# classes 40 2

Balanced dataset Yes No

4.1

4.2

Reliable baseline

Our datasets

5. Experiments 
    and Results



4.1. ModelNet40: Different Preprocessing
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Experiment Accuracy Average class accuracy

Original 88.9 86.6

Our own preprocessing 74.1 62.6

Original PointNet authors preprocessing Our own preprocessing

Less interpretability
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2 classes
Imbalanced dataset

Experiment Accuracy Average class accuracy

Original 88.9 86.6

Our own preprocessing 74.1 62.6

Binary 99.4 98.1

4.2. ModelNet40: Binary Classification
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Precision Recall

98.0 96.4

Original

40 classes
Balanced dataset

Binary - Imbalanced



5. Experiments and Results
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Our datasets
Our datasets

Source LIDAR sensor

Points density Not uniform

# classes 2

Balanced dataset No

Pedestrian clusters Non-pedestrian clusters

ModelNet40

PointNet++

4. Previous Experiments

4.1 4.2 Reliable baseline

Our datasets

5. Experiments 
    and Results
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Our datasets

Experiment Precision Recall

Batch size: 32 96.6 32.5

Batch size: 64 95.4 29.9

Batch size: 128 78.0 31.9

Less training clusters 93.2 31.9

Baseline

ModelNet40 Our datasets

Number of point clouds 12,308 87,536

YOLO 99.8 77.9



5.2. Without data augmentation (I)
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Modelnet40: Chair

Our datasets: Pedestrian

Data augmentation ROTATION



Experiment Precision Recall

Batch size: 32 96.6 32.5

Batch size: 64 95.4 29.9

Batch size: 128 78.0 31.9

Less training clusters 93.2 31.9

Without data augmentation 99.1 98.6

5.2. Without data augmentation (II)
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Experiment Precision Recall

Batch size: 32 96.6 32.5

Batch size: 64 95.4 29.9

Batch size: 128 78.0 31.9

Less training clusters 93.2 31.9

Without data augmentation 99.1 98.6

5.2. Without data augmentation (II)
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Our datasets

YOLO 99.8 77.9

Baseline



5.3. Non-pedestrians with less overlap
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Our datasets

Experiment Precision Recall

Batch size: 32 96.6 32.5

Batch size: 64 95.4 29.9

Batch size: 128 78.0 31.9

Less training clusters 93.2 31.9

Without data augmentation 99.1 98.6

Non-pedestrians with less 
overlap 97.1 97.7

*

Non-pedestrian overlap ~70% ~20%

*



5.4. Multi Scale Grouping (MSG) Model
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Our datasets

Experiment Precision Recall

Batch size: 32 96.6 32.5

Batch size: 64 95.4 29.9

Batch size: 128 78.0 31.9

Less training clusters 93.2 31.9

Without data augmentation 99.1 98.6

Non-pedestrians with less 
overlap 97.1 97.7

MSG model 99.4 92.5*

*

PointNet++ architecture Single Scale Grouping Multi Scale Grouping



5.5. Batch Size: 32 + Without data augmentation
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Our datasets

Experiment Precision Recall

Batch size: 32 96.6 32.5

Batch size: 64 95.4 29.9

Batch size: 128 78.0 31.9

Less training clusters 93.2 31.9

Without data augmentation 99.1 98.6

Non-pedestrians with less 
overlap 97.1 97.7

MSG Model 99.4 92.5
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Pedestrian detection system in point
clouds using Deep Neural Networks

PointNet++ can help YOLO

System to generate a dataset 
with ground truth in point clouds

LIDAR sensors    safety, reliability

6. Conclusions
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Precision Recall

YOLO 99.8 77.9

PointNet++ 99.1 98.6



7. Contributions

● Pedestrian detection in RGB images with YOLO

● YOLO evaluation

● Non-pedestrian detection in RGB images

● Labeling transfer onto 3D point clouds

● Preprocessing and data splitting in 3D point clouds

● Pedestrian detection in 3D point clouds with PointNet++
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8. Future Work

➔ Scanning strategy to detect pedestrians in point clouds

➔ Real-time implementation

➔ PointNet++ parameters optimization

➔ Strategy to combine point clouds with RGB images
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Thank you for your attention!
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Scene # GT 
boxes

YOLO 
detections TP FP FN Precision Recall

1 104 96 96 0 8 100 92.3

2 117 95 95 0 22 100 81.2

3 127 101 101 0 26 100 79.5

4 168 140 140 0 28 100 83.3

5 122 96 96 0 26 100 78.7

6 118 109 108 1 10 99.1 91.5

7 190 145 145 0 45 100 76.3

8 213 160 160 0 53 100 75.1

9 184 146 145 1 39 99.3 78.8

10 131 63 63 0 68 100 48.1

Total 1474 1151 1149 2 325 99.8 77.9

YOLO Evaluation
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Non-pedestrian bounding boxes with more overlap Non-pedestrian bounding boxes with less overlap
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Labeling transfer

Highway: Ego-motion effect

Indoor: Calibration issues
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Original Random Voxel grid Farthest Point Sampling

Farthest Point Sampling

1

2

3

45
6



56

Clusters

Dataset Pedestrians Non-Pedestrians Total

Training 6,932 60,388 67,320

Validation 1,733 15,098 16,831

Test 345 3,040 3,385

Total 9,010 78,526 87,536

Dataset splitting

1 2 3 4 5

6 7 8 9 10
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Modelnet40 - Binary classification
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Our datasets

Model Loss Accuracy
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Our datasets

Precision Recall


