

Shaping light to your needs

Pedestrian Detection in 3D Point Clouds using Deep Neural Networks

Òscar Lorente Corominas

Advisors: Josep R. Casas, Santiago Royo CD6, UPC - ETSETB: Escola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona Degree Thesis · 2020

Shaping light to your needs

1. Introduction (I)

Shaping light to your needs

1. Introduction (I)

Shaping light to your needs

1. Introduction (II)

RGB

Time Of Flight: LIDAR

4

Shaping light to your needs

1. Introduction (II)

Shaping light to your needs

2. Objectives (I)

Pedestrian detection system in point clouds using Deep Neural Networks

Shaping light to your needs

2. Objectives (I)

Pedestrian detection system in point clouds using Deep Neural Networks

Shaping light to your needs

2. Objectives (I)

Pedestrian detection system in point clouds using Deep Neural Networks

Shaping light to your needs

2. Objectives (II)

Pedestrian detection system in point clouds using PointNet++

System to generate a dataset with ground truth in point clouds

Shaping light to your needs

2. Objectives (II)

Shaping light to your needs

Contents

- 1. Introduction
- 2. Objectives
- 3. Methods
- 4. Previous Experiments

- 5. Experiments and Results
- 6. Conclusions
- 7. Contributions
- 8. Future Work

Shaping light to your needs

3. Methods

Shaping light to your needs

Shaping light to your needs

3.1. Pedestrian Detection in RGB Images (I) YOLO: You Only Look Once

Shaping light to your needs

3.1. Pedestrian Detection in RGB Images (II) YOLO: You Only Look Once

Shaping light to your needs

3.1. Pedestrian Detection in RGB Images (III)

YOLO: You Only Look Once

Shaping light to your needs

3.1. Pedestrian Detection in RGB Images (III)

YOLO: You Only Look Once

Shaping light to your needs

3.2. Non-Pedestrian Detection in RGB Images (I)

Shaping light to your needs

Shaping light to your needs

3.2. Non-Pedestrian Detection in RGB Images (I)

Pedestrian bounding boxes Non-pedestrian bounding boxes Label non-pedestrians 13,232 102,130 11.5 % Pedestrians Similar size and 88.5 % Non-pedestrians shape statistics

3.2. Non-Pedestrian Detection in RGB Images (II)

Pedestri	Bounding box class	Statist	ics	Width	Height	Ratio	unding boxes
		Mea	n	95.3	266.3	2.9	
	Pedestrian	Std. devi	iation	56.9	145.6	1.0	Pixels
	Non-pedestrian	Mea	n	111.1	302.5	2.8	
		Std. devi	iation	37.9	102.3	0.9	
	11.5 % Pedestri 88.5 % Non-ped	ans lestrians	K	Simil shap	ar size and e statistics		

Shaping light to your needs

3.3. Labeling Transfer (I)

Shaping light to your needs

3.3. Labeling Transfer (I)

Shaping light to your needs

3.3. Labeling Transfer (I)

24

Shaping light to your needs

3.3. Labeling Transfer (II)Problems

LIDAR cannot capture some elements properly

Minimum # points: <u>1024</u>

Shaping light to your needs

3.3. Labeling Transfer (III)

Problems

LIDAR cannot capture some elements properly

LIDAR Field Of View (FOV) < Camera resolution

Minimum area: 70%

Shaping light to your needs

3.4. Pedestrian Detection in 3D Point Clouds (I)

Labeled pedestrian and non-pedestrian point clouds

Shaping light to your needs

3.4. Pedestrian Detection in 3D Point Clouds (I)

Shaping light to your needs

3.4. Pedestrian Detection in 3D Point Clouds (II)

Shaping light to your needs

4. Previous Experiments

PointNet++ datasets: ModelNet40

Charles R. Qi et al., **<< Pointnet++: Deep hierarchical feature learning on point sets in a metric space >>**, Standford University, 2017

	ModelNet40	Our datasets
Source	CAD models	LIDAR sensor
Points density	Uniform	Not uniform
# classes	40	2
Balanced dataset	Yes	No

Shaping light to your needs

4. Previous Experiments

Shaping light to your needs

4.1. ModelNet40: Different Preprocessing

Original

PointNet authors preprocessing

Our own preprocessing

Less interpretability

Accuracy	Average class accuracy
88.9	86.6
74.1	62.6
	Accuracy 88.9 74.1

Shaping light to your needs

Shaping light to your needs

4.2. ModelNet40: Binary Classification

Experiment	Accuracy	Average class accuracy
Original	88.9	86.6
Our own preprocessing	74.1	62.6
Binary	99.4	98.1

Shaping light to your needs

5. Experiments and Results

Our datasets

Pedestrian clusters

Non-pedestrian clusters

	Our datasets
Source	LIDAR sensor
Points density	Not uniform
# classes	2
Balanced dataset	No

5.1. Batch size vs. number of point clouds

Our datasets		ModelNet40	Our datasets
	Number of point clouds	12,308	87,536
Experiment	Precision	R	lecall
Batch size: 32	96.6		32.5
Batch size: 64	95.4		29.9
Batch size: 128	78.0		31.9
Less training clusters	93.2		31.9

5.1. Batch size vs. number of point clouds

Our datasets				ModelNet40	Our datasets	
			Number of point clouds	12,308	87,536	
Baseline ↓ Experiment		Experiment	Precision	R	Recall	
		Batch size: 32	96.6		32.5	
		Batch size: 64	95.4	:	29.9	
		Batch size: 128	78.0	:	31.9	
	Le	ess training clusters	93.2		31.9	

5.1. Batch size vs. number of point clouds

Our datasets				ModelNet40	Our datasets
			Number of point clouds	12,308	87,536
Baselin	$\stackrel{\bullet}{\longrightarrow}$	Experiment	Precision	R	ecall
		Batch size: 32	96.6		32.5
		Batch size: 64	95.4	:	29.9
		Batch size: 128	78.0		31.9
	Le	ess training clusters	93.2		31.9

•			
	YOLO	99.8	77.9

Shaping light to your needs

5.2. Without data augmentation (I)

Shaping light to your needs

5.2. Without data augmentation (II)

Our datasets

	Experiment	Precision	Recall
<u>↓</u> ↑	Batch size: 32	96.6	32.5
•	Batch size: 64	95.4	29.9
	Batch size: 128	78.0	31.9
	Less training clusters	93.2	31.9
*	Without data augmentation	 99.1 个	98.6 个个

B

Centre for Sensors, Instruments and Systems Development UNIVERSITAT POLITECNICA DE CATALUNYA

Shaping light to your needs

5.2. Without data augmentation (II)

Our datasets

	Experiment		Precision)	Recall	
		Batch size: 32	96.6		32.5	
		Batch size: 64	95.4		29.9	
		Batch size: 128	78.0	0	31.9	0
aselin	e <u>↓</u>	ess training clusters	93.2		31.9	
	Withc	out data augmentation	99.1 <i>´</i>	$\uparrow \bigcirc$	98.6	

YOLO	99.8	77.9

*

Shaping light to your needs

5.3. Non-pedestrians with less overlap

Our datasets				*
	Non-pedestrian o	Non-pedestrian overlap		
Experiment	Precision		Recall	
Batch size: 32	96.6		32.5	
Batch size: 64	95.4	29.9		
Batch size: 128	78.0		31.9	
Less training clusters	93.2		31.9	
- Without data augmentation	99.1	98.6		
Non-pedestrians with less overlap	97.1 ↓		97.7 🗸	/

*

Shaping light to your needs

5.4. Multi Scale Grouping (MSG) Model

	<u>Our datasets</u>			→ ←		*	
		PointNet++ arc	hitecture	Single Scale Grou	uping	Multi Scale Grouping	
	Experiment Batch size: 32 Batch size: 64 Batch size: 128 Less training clusters		Precision			Recall	
			96.6			32.5	
			95.4 78.0 93.2			29.9	
					31.9		
						31.9	
-	- Without data augmentation			99.1		98.6	
	Non-pedestria over	ans with less lap		97.1		97.7	
	MSG model			99.4 个		92.5 🗸	

5.5. Batch Size: 32 + Without data augmentation

Our datasets

Experiment	Precision	Recall
Batch size: 32	96.6	32.5
Batch size: 64	95.4	29.9
Batch size: 128	78.0	31.9
Less training clusters	93.2	31.9
Without data augmentation	99.1	98.6
Non-pedestrians with less overlap	97.1	97.7
MSG Model	99.4	92.5

Shaping light to your needs

6. Conclusions

Pedestrian detection system in point clouds using Deep Neural Networks

Shaping light to your needs

6. Conclusions

Pedestrian detection system in point clouds using Deep Neural Networks

&PointNet++ can help YOLO லல்

	Precision	Recall
YOLO	99.8	77.9
PointNet++	99.1	98.6

Shaping light to your needs

6. Conclusions

Pedestrian detection system in point clouds using Deep Neural Networks

☆PointNet++ can help YOLO‱ி

System to generate a dataset with ground truth in point clouds

Recall

77.9

98.6

Precision

99.8

99.1

YOLO

Shaping light to your needs

6. Conclusions

Pedestrian detection system in point clouds using Deep Neural Networks

d PointNet++ can help YOLO

System to generate a dataset with ground truth in point clouds

 $\mathbb{R}^{\mathbb{R}}$ LIDAR sensors \rightarrow safety, reliability

Precision

99.8

99.1

YOLO

PointNet++

Recall

77.9

98.6

Shaping light to your needs

7. Contributions

- Pedestrian detection in RGB images with YOLO
- YOLO evaluation
- Non-pedestrian detection in RGB images
- Labeling transfer onto 3D point clouds
- Preprocessing and data splitting in 3D point clouds
- Pedestrian detection in 3D point clouds with PointNet++

Shaping light to your needs

8. Future Work

- → Scanning strategy to detect pedestrians in point clouds
- → Real-time implementation
- → PointNet++ parameters optimization
- → Strategy to combine point clouds with RGB images

Shaping light to your needs

Thank you for your attention!

UNIVERSITAT POLITÈCNICA **DE CATALUNYA** BARCELONATECH

ER-0016/2012

Shaping light to your needs

YOLO Evaluation

Scene #	GT boxes	YOLO detections	ТР	FP	FN	Precision	Recall
1	104	96	96	0	8	100	92.3
2	117	95	95	0	22	100	81.2
3	127	101	101	0	26	100	79.5
4	168	140	140	0	28	100	83.3
5	122	96	96	0	26	100	78.7
6	118	109	108	1	10	99.1	91.5
7	190	145	145	0	45	100	76.3
8	213	160	160	0	53	100	75.1
9	184	146	145	1	39	99.3	78.8
10	131	63	63	0	68	100	48.1
Total	1474	1151	1149	2	325	99.8	77.9

Shaping light to your needs

Non-pedestrian bounding boxes with more overlap

Non-pedestrian bounding boxes with less overlap

Shaping light to your needs

Labeling transfer

Highway: Ego-motion effect

Indoor: Calibration issues

Shaping light to your needs

Original

Farthest Point Sampling

Shaping light to your needs

Dataset splitting	Clusters			
Dataset	Pedestrians	Non-Pedestrians	Total	
Training	6,932	60,388	67,320	
Validation	1,733			
 Test	345	3,040	3,385	
Total	9,010	78,526	87,536	

Shaping light to your needs

Modelnet40 - Binary classification

Shaping light to your needs

Our datasets

Model Loss

Accuracy

Shaping light to your needs

Our datasets

